E021423
critique of the article using the critical appraisal guidelines…
critique of the article using the critical appraisal guidelines that includes the three major steps
The research elements – Authors, Year, LOE, design, purpose, study variables, sampling, measurement, main results, and findings or conclusions
Strengths and Weaknesses – Determine the study strengths and weaknesses
Meaning of the Study – Evaluate the credibility, trustworthiness, and meaning of the study for its applicability to your PICOT (p. 443).
Congestive heart failure clinics and telemedicine:
The key to reducing hospital readmissions
in the United States
Devyani Ramgobin1, Maique Vo1, Reshma Golarmari2, Rahul Jain3, Rohit Jain2
1Touro College of Osteopathic Medicine, Middletown, New York, United States 2Department of Internal Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA, United States
3Indiana University School of Medicine, Bloomington, Indiana, United States
Abstract
The United States healthcare system currently faces an economic challenge related to frequent hospital readmission rates. As such, hospitals have begun implementing strategies to reduce readmission rates for specific medical conditions such as congestive heart failure, which had a 30-day readmission rate of 23.2% in 2014. Patient education and frequent monitoring of symptoms have since allowed patients to work together with doctors and nurses to take charge of their healthcare management. Due to heart failure clinics and the rise of telemedicine and telemonitoring, heart failure readmission rates have since decreased. (Cardiol J 2022; 29, 6: 1013-1019)
Key words: congestive heart failure, telemedicine, telemonitoring, heart failure clinics
Introduction
Readmission is a major concern for the United States (US) healthcare system. Under the Afford- able Care Act’s Hospital Readmission Reduction Program (HRRP), hospital systems are penalized monetarily if they have a higher than expected 30- -day readmission for 6 conditions [1]. The Center for Medicare and Medicaid Services (CMS) can withhold anywhere from 1% to 3% of Medicare reimbursements for the readmissions of conges- tive heart failure (CHF), coronary artery bypass graft surgery, acute myocardial infarction, elective primary total hip/knee arthroplasty, pneumonia, and chronic obstructive pulmonary disease. Under theHRRP,CMSevaluatedatotalof3129hospitals for the fiscal year 2020, and 2583 (83%) of these hospitals will face penalties, which is estimated at $563 million dollars over the course of 1 year [2].
In a 2014 comparison of 7-day and 30-day read- missions by Fingal et al. [3], nearly 10% of Med- icaid patients with a diagnosis of either CHF or schizophrenia were readmitted within 7 days of discharge. The top 5 diagnoses with the highest 30-day readmission rates (n = 27,698,101) were as follows: CHF (23.2%), schizophrenia (22.9%), respiratory failure (21.6%), alcohol-related disor- ders (21.5%), iron deficiency and other anemias (21.2%) (Fig. 1) [3]. In the US, CHF affects 2-3% of the population, with a slightly higher prevalence in males (10%) compared to females (8%) [1]. Given that the CMS can withhold at least 1% of Medicare reimbursement for a diagnosis such as heart failure (HF), and the 30-day readmission rate for HF is 23.2%, the American healthcare system is becoming increasingly burdened with juggling between optimizing patient care and preventing readmissions.
Address for correspondence: Dr. Devyani Ramgobin, Touro College of Osteopathic Medicine, Middletown, NY 10940, United States, tel: 917-400-5170, e-mail: d..i@student.touro.edu
Received: 9.11.2021 Accepted: 6.06.2021 Early publication date: 2.07.2021
This article is available in open access under Creative Common Attribution-Non-Commercial-No Derivatives 4.0 International (CC BY-NC-ND 4.0) license, allowing to download articles and share them with others as long as they credit the authors and the publisher, but without permission to change them in any way or use them commercially.
www.cardiologyjournal.org 1013
Cardiology Journal 2022; Vol. 29, No. 6
De?ciency and other anemias
Alcohol related disorders
Respiratory failure Schizophrenia CHF
21.20% 21.50%
21.60%
22.90%
23.20%
Percentage of readmissions (n = 27.698.101)
Figure 1. Top diagnoses with the highest 30-day read- mission rates out of 27,698,101 readmissions. Red bar: congestive heart failure (CHF) accounts for 23.2% of all readmissions within 30 days.
Pathophysiology of congestive heart failure
Congestive heart failure is an accumula- tion of myocardial injury that ultimately leads to counterproductive remodeling of the heart [4]. CHF results in reduced cardiac output, leading to compensatory effects by the body through neurohumoral activation and activa- tion of the sympathetic nervous system (Fig. 2). There are two types of HF that commonly present in patients: systolic and diastolic. Systolic heart
failure is referred to as HF with reduced ejection fraction (HFrEF), which presents with lower-than- normal left ventricular ejection fraction on echocar- diogram [5]. The myocardium is unable to contract adequately and, as a result, ejects less oxygen-rich blood into the body. Fatigue and shortness of breath are common symptoms. In diastolic HF, also known as HF with preserved ejection fraction (HFpEF), patients present with left ventricular diastolic dys- function [6]. In HFpEF, the myocardium contracts normally but a thickened left ventricle reduces compliance, resulting in decreased filling capacity and thus cardiac output. Decreased cardiac output results in deactivation of the carotid baroreceptors and activation of the renin-angiotensin system [7]. Angiotensin II increases afterload by activating vasoconstriction to the blood vessels, aldosterone increases preload by increasing sodium and water retention, and antidiuretic hormone stimulates water retention [8]. Without B-type natriuretic peptide and atrial natriuretic peptide, the water retention exacerbates the symptoms of CHF, leading to damage of left ventricular remodeling to compensate for the increased peripheral resist- ance [7]. The body compensates by stimulating the sympathetic nervous system to increase heart rate and contractility, which increases stress on the heart. Increasing contractility increases the cardiac workload resulting in dilation and hypertrophy of the cardiac heart muscle. In a failing heart, the com- promised ventricles are unable to pump the blood
ADH
Sodium and water retention
Aldosterone
ATII
RAAS
Neurohumoral activation
Afterload Ventricular remodeling
Heart rate contractility
SNS activation
Cardiac output
Congestive heart failure
Water retention
BNP/ANP
Carotid baroreceptor
Preload
Figure 2. Mechanism of congestive heart failure; ADH antidiuretic hormone; ANP atrial natriuretic peptide; ATII angiotensin II; BNP B-type natriuretic peptide; RAAS renin-angiotensin-aldosterone system; SNS sympathetic nervous system.
1014 www.cardiologyjournal.org
Devyani Ramgobin et al., Reducing hospital readmissions with clinics and telemedicine
90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000
0
2007 2009 2011
2013 2015 2017
75,251 65,120
58,309
80,480
56,565 56,410
Number of deaths
Figure 3. Heart failure mortality rates in the United States from 2007 to 2017. Trendline shows an increase in mortality over a 10-year period.
forward to the rest of the body, resulting in fluid accumulation into the lungs and the rest of the boy.
Congestive heart failure morbidity and mortality rates
In a 2020 updated report from the American Heart Association, an estimated 6.2 million Ameri- cans over the age of 20 years have HF. In 2016, hos- pital discharges with a diagnosis of CHF numbered 809,000, and in 2017 the mortality rate from CHF was 80,480, a 42% increase from 56,565 in 2007 [9, 10]. As has been shown, there has been a steady increase in mortality from HF (Fig. 3). Heidenreich et al. [11] estimated that the medical cost of CHF admissions will increase from $20.9 billion in 2012 to $53.1 billion in 2030, with the majority (80%) being attributed to hospitalization. Similarly, their projections show the prevalence of HF increasing by 46% from 2012 to 2030 [11]. Among Medicare patients, the prevalence of HF was 44% in 2010, with HF admissions being the costliest preventable hospitalization at an average $10,775 [12].
Several factors play roles in the high readmis- sion rate of CHF. In an analysis done by Inamdar, some of the major causes of readmission were shown to be due to medication noncompliance, smoking, diet noncompliance, failure of documenta- tion of discharge information and patient education, and comorbidities such as hypertension and diabe- tes mellitus [1]. Under the HRRP, hospitals have since been incentivized to come up with strategies to decrease the number of readmissions. Some of these strategies include multidisciplinary HF clin- ics, visiting nurse services, physician-directed HF transitional care programs, telemonitoring at home, and 1-week follow-ups. Inamdar also reports that HF clinics reduced all cause readmission rates by
50% [1]. During the HRRP implementation phase the 30-day risk-adjusted readmission rate declined from 20% to 18.4%; however, the 30-day mortality rate increased from 7.6% to 9.3% [13].
Congestive heart failure clinics and outcomes
An important reason why readmission rates have effectively decreased is due to outpatient HF clinics, home intervention methods, and medica- tions. Because HF disproportionately affects the older population, the management goals focus on maintaining and optimizing patient capabilities (Central illustration). Several classes of drugs have been indicated in the treatment of HF, such as diu- retics, angiotensin converting enzyme inhibitors, and more (Table 1). For CHF patients to remain stable after discharge, fluid balance, blood pressure, and heart rate must be medically optimized [14]. This can be monitored during clinic follow-up or at home via implantable devices that transmit data to healthcare providers. CHF clinics, commonly known as HF clinics, have been developed to help patients diagnosed with CHF manage their condi- tion. By educating patients on their disease and encouraging active participation in their treatment, one goal is to reduce the need for readmission to hospitals for CHF exacerbations. It is important that patients being discharged also have a strong support system and home environment so that they can maintain functional independence. Car- egivers may also accompany patients to clinic ap- pointments, thus ensuring proper follow-up after discharge. Outpatient clinics can help in educating patients and caregivers on weight management, medication compliance, dietary changes, and exer- cise regimens. By seeing a multidisciplinary team
www.cardiologyjournal.org 1015
Cardiology Journal 2022; Vol. 29, No. 6
Congestive heart failure readmission prevention
Multi-disciplinary teams and outpatient CHF clinics
Treatment options
Tele-medicine and tele-monitoring
Morbidity Mor tality
Central illustration. Key proponents in reducing readmission rates related to congestive heart failure (CHF). Table 1. Drugs commonly used in the treatment of heart failure (HF), their mechanisms of action, and
effects.
HF treatments Drug names Mechanism of action Effects
Angiotensin con- verting enzyme (ACE) inhibitors Captopril, enal- april, fosinopril, lisinopril, ramipril Competitively inhibit the conversion of angiotensin I to angiotensin II, inhibit bradykinin metabolism, promote sodium and water excretion by inhibiting angiotensin II- -induced aldosterone secretion Reduces preload and afterload on the heart, exerts reno-protective effects via dilation of renal arterioles, reduces cardiac and vascular remodeling
Angiotensin recep- tor blockers (ARBs) Candesartan, losartan, valsartan Prevents angiotensin II from binding to its receptor Prevents vasoconstriction and aldosterone secretion
Calcium channel blockers Ivabradine Blocks hyperpolarization-activated cyclic nucleotide (HCN) gated channel responsible for cardiac pacemaker funny current Decreases heart rate, cardiac output and oxygen demand
Beta-blockers Bisoprolol, metoprolol, carvedilol
Blocks response to beta-adren-
ergic stimulation by preventing ligand binding of the beta-adren- ergic receptor by norepinephrine and epinephrine; cardio selective for beta-1 at low doses
Decreases heart rate, contractility, conduction velocity, and relaxation rate of myocardial tissues
Aldosterone an- tagonists Spironolactone, eplerenone Competitively binds receptors at aldosterone-dependent sodium- -potassium (Na-K) exchange site in distal renal tubules Increases excretion of sodium, chloride and water; increases retention of potassium and hydrogen ion
Diuretics Furosemide, bumetanide, torsemide, chlorothiazide, hydrochlo- rothiazide, triamterene, metolazone, indapamide Loop diuretics: Inhibit cotransport of Na-K-2Cl at the thick ascending loop of Henle
Thiazide diuretics: Inhibit sodium- -chloride transporter at the distal renal tubule
Potassium sparing diuretics: Inhibit sodium channels at the cortical collecting tubules Promotes diuresis, depletion of sodium and total body volume resulting in decreased cardiac output
Angiotensin receptor neprilysin blockers Sacubitril/ /valsartan
Sacubitril: neprilysin inhibitor. Neprilysin degrades atrial and B-type natriuretic peptides as well as bradykinin
Valsartan: angiotensin II receptor type I inhibitor
Promotes relaxation of blood vessels, sodium excretion and fluid retention
1016 www.cardiologyjournal.org
Devyani Ramgobin et al., Reducing hospital readmissions with clinics and telemedicine Table 2. Summary of studies done to evaluate the readmission rates between patients who had
physician follow-up compared to those without follow-up.
Author Country Study Outcome
Tung et al., 2017 Taiwan 13,775 patients discharged from hospitals in 2010 followed for association between 7-day follow-up and 30-day readmission
Early physician follow-up of HF patients was associated with lower readmission rates compared to no physician follow-up
(HR 0.54; 95% CI 0.48-0.60)
Hernandez et al., 2010 United States Observational analysis of patients 65 years or older with HF Patients discharged from the hospital, who have higher early follow-up rates, also have lower 30-day readmission rates
Jain et al., 2010 United States 138 HF patients during the period June 2005 through June 2006 were evaluated for outcomes through September 2007 4 HF clinic patients (n = 27) were readmitted 5 times
85 non-HF clinic patients (n = 111) were readmitted 187 times
(p < 0.001)
A subgroup analysis of crossovers from the non-HF clinic to HF clinic group (n = 39) revealed a 60% reduction in readmission
Tse et al., 2018 United States Systematic review and meta-analysis of randomized controlled trials and real-world studies Telemonitoring reduced hospitalization rates of HF patients (n = 31,501) by 24% over a 6-month period, and by 27% over a 12-month period
Cleland et al., 2005 United States Comparison between HTM, NTS, and usual care on improving outcomes for patients with HF who are at high risk of hospitalization or death
Similar numbers of admissions and mortality among patients in the HTM and NTS groups. Patients in the HTM group had reduced mean duration of admissions by 6 days (95% CI 1-11). Patients in the usual care group had a higher 1-year mortality (45%) than patients in the NTS (27%) and
HTM (29%) groups (p = 0.032)
CI confidence interval; HF heart failure; HR hazard ratio; HTM home telemonitoring; NTS nurse telephone support
at an HF clinic, a patient's care is tailored to their specific needs. Multidisciplinary teams include a cardiologist, specialized HF nurses, pharmacists, physiotherapists, social workers, dieticians, and other allied health professionals [15]. It is espe- cially important for patients being discharged to be followed up at either their doctor's office or an outpatient clinic for management of their condition. Outpatient clinic visits with a physician or health- care provider after discharge prove to be important in reducing readmission for HF. In a Taiwanese study of 13,577 HF patients, early follow-up with a physician within 7 days of discharge was associated with a lower readmission rate (Table 2) [16]. Simi- larly, an extensive observational analysis conducted by Hernandez et al. [17] showed that patients who were discharged and received early follow-up with a physician had lower 30-day readmission rates. In a study comparing patients followed in outpatient management vs. no management, only 4 (n = 27)
managed outpatients were readmitted 5 times, whereas 85 (n = 111) patients who did not have follow-up accounted for a total of 187 readmissions (p < 0.001) [18].
Advent of telemedicine
Due to advancements in digital technology and Internet access, coupled with ever changing circumstances, telemedicine has recently become increasingly popular. Telemedicine is the use of video and audio technology, such as phones and webcams, to electronically connect a patient to a health care provider remotely [19]. Telemedicine is used to deliver patient care and provide follow-up and education to patients who may not be able to visit a doctor's office as soon as possible. It is not only cost effective but it also provides healthcare professionals the opportunity to see and talk to their patients in real time [20]. The efficacy and
www.cardiologyjournal.org 1017
Cardiology Journal 2022; Vol. 29, No. 6
ease of seeing a healthcare professional in the comfort of your own home is an opportunity many do not pass on. Not only can patients visit with a doctor, but they can also talk to behavioral health counselors, dieticians, social workers, and other professionals while at home. In the management of CHF, telemedicine could be utilized to follow up patients leaving the hospital, ensuring they are receiving adequate care. Healthcare providers can also remotely telemonitor and review vitals from patient's in-home devices such as blood pressure monitors and pulse oximetry. Telemonitoring is the continuous assessment of a medical condition by way of home monitoring systems or implantable devices that automatically transmit vital signs and other physiological data to medical professionals. Vital signs can be used to check for decompensated HF by measuring parameters such as heart rate, blood pressure, heart rate variability, urine output, and weight gain [21]. Remote data collection can also be done by patient questionnaires that moni- tor vital signs and symptoms daily. It is not only non-invasive but also much easier for a patient to continue care in their own home. Home telemoni- toring has been found to reduce the average num- ber of days spent in the hospital, and patients who received home telemonitoring or nurse telephone support had a better 1-year mortality outcome than patients who received usual care (p = 0.032) [22]. In a meta-analysis by Tse et al. [21], telemonitor- ing reduced hospitalization rates of HF patients (n = 31,501) by 24% over a 6-month period, and by 27% over a 12-month period. Providers can also utilize hemodynamic monitoring by way of implant- able cardiac devices, such as CardioMEMS and HeartPOD, which continuously transmit cardiac or vascular pressures to a remote system that can be reviewed. Here, doctors can assess increases in intracardiac and pulmonary arterial pressures, which may indicate oncoming decompensation of HF [21]. Therefore, both telemedicine and telem- onitoring can be utilized by healthcare profession- als to effectively assess patients being discharged from the hospital. These interventions can reduce 30-day readmission rates by decreasing the likeli- hood of CHF exacerbations.
Conclusions
Heart failure costs the US healthcare system billions of dollars annually. Hospitalizations are ex- pensive, and readmission rates have increased the burden on hospitals due to decreased compensation for readmissions. On the other hand, patients who
are discharged and do not follow up with a provider for management often have poorer outcomes than those who do undergo follow-up. Outpatient clinics and telemedicine/telemonitoring are crucial for re- ducing the readmissions rates of patients with HF and for achieving better health outcomes. Given that some HF patients have significant barriers to accessing medical care outside of the hospital, such as physical inability, lack of transportation, or residing in a rural area, telemedicine provides the ability to receive the care they need. Together, clin- ics and telemedicine/telemonitoring interventions help to create a system that works with patients to achieve their health goals. We are hopeful that telemedicine and outpatient clinics will continue to reduce patient's readmissions and mortality and play a key role in caring for the aging population.
Conflict of interest: None declared